Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance.

نویسندگان

  • H Shimoi
  • H Kitagaki
  • H Ohmori
  • Y Iimura
  • K Ito
چکیده

A 260-kDa structural cell wall protein was purified from sodium dodecyl sulfate-treated cell walls of Saccharomyces cerevisiae by incubation with Rarobacter faecitabidus protease I, which is a yeast-lytic enzyme. Amino acid sequence analysis revealed that this protein is the product of the SED1 gene. SED1 was formerly identified as a multicopy suppressor of erd2, which encodes a protein involved in retrieval of luminal endoplasmic reticulum proteins from the secretory pathway. Sed1p is very rich in threonine and serine and, like other structural cell wall proteins, contains a putative signal sequence for the addition of a glycosylphosphatidylinositol anchor. However, the fact that Sed1p, unlike other cell wall proteins, has six cysteines and seven putative N-glycosylation sites suggests that Sed1p belongs to a new family of cell wall proteins. Epitope-tagged Sed1p was detected in a beta-1,3-glucanase extract of cell walls by immunoblot analysis, suggesting that Sed1p is a glucanase-extractable cell wall protein. The expression of Sed1p mRNa increased in the stationary phase and was accompanied by an increase in the Sed1p content of cell walls. Disruption of SED1 had no effect on exponentially growing cells but made stationary-phase cells sensitive to Zymolyase. These results indicate that Sed1p is a major structural cell wall protein in stationary-phase cells and is required for lytic enzyme resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

مهار رشد رده سرطانی K562 با استفاده از دیواره سلولی استخراج شده از پروبیوتیک‌های Saccharomyces cerevisiae و Saccharomyces boulardi به همراه نانو ذرات روی

Background: Chronic myeloid leukemia is a common cancer in human, so the goal of this study was the use of natural compound such as cell wall obtained from Saccharomyces cerevisiae (S. cerevisiae) and Saccharomyces boulardi (S. boulardi) and zinc nanoparticles on the growth inhibition of K562 cell line. Methods: For cell wall preparation, both yeasts were cultured in a basic medium at a...

متن کامل

Isolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae

In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...

متن کامل

P-18: Protective Effect of Selenium- Enriched Saccharomyces Cerevisiae Cytoplasm and Cell Wall on Chronic Immobilization Stress-Induced Damages in Testis; Evidence for Apoptosis

Background Previous reports showed that immobilization stress (IMS) results in severe damages at spermatogenesis level. Present study was performed in order to evaluate the protective effect of selenium-enriched yeast fragments on IMS-induced derangements. MaterialsAndMethods For this purpose, 42 mature male Wister rats were assigned into 6 groups (7 rats in each group) including; control, stre...

متن کامل

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 13  شماره 

صفحات  -

تاریخ انتشار 1998